
 

 

The Effect of Notches on the Capacity of Wood Columns 

Daniel Merrick, PE 

Dan@danielmerrick.com 

001.408.778.9272 

001.408.778.9168 fax 

Department of Civil and Environmental Engineering 

San Jose State University 

One Washington Square 

San Jose, CA 95192-0083 

July 5, 2012 

Abstract 

There is no established method known to the author that can be used to predict the buckling or crushing 

capacity of columns that have a notch or reduced cross section at some point along its length. A method 

for calculating the capacity of long, intermediate and short wood columns that have a notched or 

reduced section is presented. A series of column tests was performed to validate the method. 

1 Introduction 

During a recent failure investigation I was called upon to evaluate the premature collapse of a structure 

in which columns had been intentionally weakened in order to facilitate engineered demolition. During 

this investigation it became apparent that within the engineering literature there is no established 

method for determining the capacity of compression members that have a reduced section over a small 

portion of their length at or near the point of maximum curvature. Also, in timber construction it is not 

uncommon for notches to be cut in members to facilitate joints or for the passage of mechanical and 

electrical components of the structure. Weakening steel columns by notching or partial cutting is not 



 

 

uncommon in demolition. This study was performed in order to explore methods of predicting the 

capacity of columns with notches. 

It is anticipated that established standard equations for the determining the capacity of columns can be 

adapted and used to predict the capacity of columns with a reduced section over a small portion of their 

length. The design equation chosen would be based on the un-notched section properties for the elastic 

terms in the equations and on the notched section properties for the inelastic or strength terms in the 

equations. 

The current design equation for wood columns is a form of the Ylinen equation which determines the 

capacity of a column on the basis of the crushing strength of the section (compressive strength 

multiplied by the area of the cross section) and the elastic strength of the column as predicted by Euler’s 

equation. In a notched column, the crushing strength is reduced in proportion to the reduced area of 

the cross section while the elastic strength can be assumed to be unchanged. 

2 Background 

In 1759 Leonard Euler published his classic Sur la Force des Colonnes (Concerning the strength of 

columns) which provided the first practical method of predicting the capacity of columns. However, 

column tests indicated that Euler’s solution did not apply to all compression elements. In 1840, Thomas 

Tredgold published the results of a series of tests by Eaton Hodgkinson on columns made of various 

metals and woods that verified Euler’s predictions for “long pillars” but found that “short flexible pillars” 

varied substantially from Euler’s prediction.  

As the industrial revolution progressed it became critical for engineers to develop a design method for 

predicting the capacity of non-Euler columns. In about 1866 the Rankine-Gordon equation, which seems 

to be a modification of an equation proposed by Tredgold, had appeared. The Rankine-Gordon formula 

is a simple interaction formula limited by the Euler strength and the crushing strength. By the late 19
th

 



 

 

century a large body of test data was available and in 1886 Thomas H. Johnson published a paper 

summarizing the results and the equations proposed to date. T.H. Johnson’s summary indicates that 

engineers had not yet solved the problem of designing non-Euler columns and were still struggling with 

the effects of end conditions on column capacity. In an article published in the December 22, 1888 

edition of Engineering News, T.H. Johnson relates that one colleague “seemed to think that all columns 

were imbued with the spirit of total depravity.” The colleague further explained his opinion with “The 

platted results being scattered over the chart like the stars above, and with about as much, or as little 

regularity.” T.H. Johnston proposed a straight line equation which was tangent to Euler’s equation with 

an intercept at the crushing strength. T.H. Johnson’s straight line solution was overly conservative. 

However, in 1893 John Butler Johnson noticed that the portion of the data that deviated from Euler’s 

solution had roughly the form of a parabola tangent to Euler’s equation with an apex at the crushing 

strength. J.B. Johnson, who wrote the standard structural engineering text of the day, published the 

parabolic equation he developed in his textbook. In part due to the popularity and longevity of his 

textbook, J.B. Johnson’s parabolic equation became and still is the standard equation for the design of 

short and intermediate length steel columns. In solving for the two unknown terms in the J.B. Johnson 

parabolic equation, one sets the parabolic equation equal to the crushing strength for a length of zero to 

find the first constant and equates the derivatives of the parabola and Euler’s equation to find the 

second constant. See Figure 1. 

While the equations for the design of steel columns had become standardized by the end of the 19
th

 

century, wood column design methods remained undeveloped. By the time the first national building 

codes were published in the 1920’s, wood column capacities were determined from tabulated values 

rather than equations. In 1930, the United States Department of Agriculture published Bulletin No. 167 

which presented the results of a timber column testing program and also proposed design equations. 

The USDA researchers had found that a plot of their data for intermediate columns had a sharper 

curvature than was represented by J.B. Johnson’s parabolic second order equation and they proposed a 



 

 

similar fourth order equation. Note that the form of Johnson’s equation can be solved for any exponent 

resulting in a range of curvatures. The 1
st

 order solution is T.H. Johnson’s straight line. 

 

The USDA 4
th

 order equation remained the basis for wood design until the 1991 National Design 

Specification which provided a single equation for columns of any slenderness rather than the two 

equations used in the USDA based design method. The 1991 NDS equation was based on work by the 

Finnish engineer Arvo Albin Johannes Ylinen that he had published in 1956. Ylinen had looked at a 

simple interaction equation, similar to the Rankine-Gordon equation, and noticed that simple 

interaction did not match the data very closely. He made two changes to the simple interaction 

equation; he added a term which modified the interaction and he modified the Euler portion of the 

equation to simulate a non-proportional elastic material similar to the tangent modulus approach. Both 

of these adjustments are made with the single constant “c” in his equation. The appropriate value of c is 

a variable of the stress strain behavior of the material, the shape of the cross section and any defects 

such as straightness, knots, etc. The value of c is found empirically from either test data or by matching 

the results of the equation to earlier established methods. The Ylinen equation is very flexible and by 

adjusting the coefficient c it can be made to approximate a wide variety of data sets. Since it is an 

interaction equation involving Euler’s equation, the Ylinen equation returns a value less that Euler’s 

equation for any length which reflects the fact that Euler’s equation tends to slightly over-estimate the 

capacity of long columns. If the Ylinen coefficient is 1.00, no interaction or reduction of Euler’s solution 

or the crushing strength occurs. See Figure 2. 

Euler’s elastic buckling solution is based on the lateral deflection of the column due to the bending 

moment which in turn is caused by the deflection eccentricity. This elastic defection curve is not 

significantly affected by a reduction in the moment of inertia if that reduction in the moment of inertia 

only occurs over a short length. The same is true for beam deflection; if the moment of inertia of a beam 



 

 

is reduced over a short length of the beam, the deflection of the beam is not significantly influenced. 

The strength of the notched beam may be significantly reduced but the stiffness is not. 

H. Liebowitz published a series of papers presenting the results of notched aluminum column tests. His 

interest was fracture and he therefore tested the columns with eccentric loading in order to cause 

tensile stresses and promote fracture. He investigated the relationship between notch size and root 

radius in regard to failure by fracture in high strength aluminum alloy. His area of inquiry is not directly 

related to this study. However, some of his results do indicate that a notch does not significantly affect 

the capacity of a long slender column. 

For the columns without a notch, Ylinen’s equation for critical load is: 

��� = �� + ��2� − 
��� + ��2� � − �����  

�� = ��� 

�� = �����  

Where: 

� = Area of section  

� = Empirical coefficient in Ylinen’s equation 

d = Minimum dimension of rectangular section  

Fc = Crushing stress 

I = Moment of Inertia 

l = Effective length of column 

�� = Crushing strength of a short block  

Pcr = Critical Load 

�� = Buckling strength provided by Euler’s equation 



 

 

� = Radius of Gyration (I/A)1/2 

 

 

 

3 Materials and Method 

Yellow Poplar was selected as the test material due to its commercial availability, uniformity of properties 

and the fact that clear specimens are easy to obtain. Commercially milled, 1.50 inch by 0.81 inch (3.81 

cm x 2.06 cm) pieces in 16 foot (4.88 m) length were acquired at a local building supply store. The pieces 

had been stored indoors at the building supply and all appeared to be from the same source. Each test 

piece of a given length was cut from a different sample in an effort to randomize selection. Four 

specimens of each configuration were fabricated. Columns for the specimens without notches were 10, 

14, 18, 22, 25.9 and 30 inches (25.4, 35.6, 36.8, 44.5, 57.2, 76.2, 87.6 cm) long. The notched specimens 

were 5, 10, 14.5, 17.5, 22.5, 26.5, 30 and 34.5 inches (12.7, 25.4, 36.8, 44.5, 57.2, 67.3, 76.2, 87.6 cm) 

long. These lengths were selected in an effort to bracket the expected inflection point in the critical load 

function. For the notched specimens, a rectangular groove 0.5 inch (1.27 cm) wide was routed in each 

wide face leaving a net thickness of about 0.52 inch (1.32 cm). The notch resulted in a 35% reduction in 

the cross sectional area and a 73% reduction in the moment of inertia. 

In order to test the pieces in a pin-pin condition, 1.50 inch (3.81 cm) long sections of 0.75 inch (1.91 cm) 

diameter half-cylindrical pieces of steel were acquired. The contact force on the half-cylinders is assumed 

to be radial, therefore the contact force is directed at the centerline of the cylinder and the effective length 

of the test specimen is the length of the test specimen. See Figures 3 and 4. 

Several crush blocks were also tested without the half-cylindrical end caps in order to test with the 

smallest effective length possible and estimate the crushing stress for the material. The effective length of 



 

 

these specimens is assumed to be half the tested length. Four 2 inch (5.08 cm) long and four 5 inch (12.7 

cm) long specimens were tested without notches. See Figure 5. 

Each specimen was placed in a universal testing machine between parallel fixed load plates, checked for 

plumb and loaded at a constant rate of displacement. All specimens were tested at the same deflection rate 

meaning that the shorter specimens were tested at a proportionally higher strain rate. 

4 Theory 

For the columns with a notch, the proposed version of Ylinen’s equation for critical load is: 

���� = ��� + ��2� − 
���� + ��2� � − ������  

��� = ���� 

Where: 

�� = Area of section at notch 

��� = Crushing strength of a short block with a notch 

 

 

5 Results 

The results of the tests of columns with and without notches are presented in figure 6. 

Columns Without Notches  Columns With Notches  
Effective Length Ave. Critical Load Effective Length Ave. Critical Load 

Inches cm Pounds kN Inches cm Pounds kN 
1 2.54 10543 46.90 5 12.70 5843 25.99 

2.5 6.35 9883 43.96 10 25.40 4778 21.25 
10 25.40 6740 29.98 14.5 36.83 3553 15.80 
14 35.56 5698 25.34 17.5 44.45 2678 11.91 
18 45.72 3548 15.78 22.5 57.15 1815 8.07 
22 55.88 2393 10.64 26.5 67.31 1364 6.07 

25.9 65.79 1682 7.48 30 76.20 1055 4.69 
30 76.20 1412 6.28 34.5 87.63 804 3.57 



 

 

        
6 Discussion 

The results clearly demonstrated that a small, symmetric notch did not significantly affect the capacity of 

long, Euler columns while significantly reducing the capacity of short and intermediate columns. The 

critical load verses length plot (Figure 6) shows some irregularity but clearly shows the expected reverse 

in curvature for columns with and without notches. The irregularity of the data, particularly the 14 inch 

(35.6 cm) columns without notch, might be attributed to the small sample size and inadequate 

randomization of samples. 

In calculating the theoretical values for both the notched and un-notched columns, the crushing strength, 

the modulus of elasticity and the Ylinen constant “c” were empirically selected. A crushing strength of 

8790 psi (60.6 MPa) was selected in order to match the result of the short crush block tests. A modulus of 

elasticity of 1.96x106 psi (13.5 GPa) was chosen so that Euler’s equation matched the results from the 

longest non-notched column tests. An Ylinen constant of 0.50 was selected for a good fit to the non-

notched column data. For comparison, the Forest Products Laboratory Wood Handbook lists the modulus 

of elasticity of Yellow Poplar as 1.58x106 psi (1.09 GPa) and the crushing strength (compression parallel 

to the grain) as 5540 psi (38.2 MPa). The FPL values are based on a moisture content of 12% and our 

specimens were approximately 6%.  

 

7 Conclusion 

These results indicate that Ylinen’s equation for the capacity of wood columns can be adapted to 

determine the capacity of wood columns with a notch of any slenderness. The adaptation needed is to 

simply reduce the cross sectional area used in the equation to the cross sectional area at the notch. In 

practical application, the standard design equation with factor of safety provided in the NDS can be 

adapted and used. 



 

 

This work was initially motivated by the collapse of a large steel structure. A program of testing to 

investigate steel should be developed and implemented. Steel would arguably be a better research 

material due to more consistent material properties and the virtually ideal stress-strain behavior.  

It is arguable that most columns in service are not slender enough to be considered Euler columns. Future 

research should focus on developing methods to predict the capacity of non-elastic columns. Based on the 

data in this study and unpublished steel data, it is anticipated that some form of Johnson’s parabolic 

equation will be best suited to steel columns with notches and that some form of Ylinen’s equation will be 

best suited to wood columns with notches. 
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Figure 1. Johnson’s Equation 



 

 

 

Figure 2. Ylinen’s Equation 



 

 

 

Figure 3. Column Test Pin Support 



 

 

 

Figure 4. Typical Column Test Specimen with Notch 

 

Figure 5. Crush Block Test No Notch 



 

 

 

Figure 6. Results 


